7. (a) Find the maximum and minimum distances of the point $(3,4,12)$ from the sphere $x^{2}+y^{2}+z^{2}=1.7 .5$
(b) Find the directional derivative of the $f=x y^{2}+y z^{2}$ at the point $(2,-1,1)$ in direction of the vector $\hat{i}+2 \hat{j}+2 \hat{k}$.
7.5
UNIT - IV
8. (a) Find the Inverse of Matrix:

$$
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
0 & 2 & 1 \\
5 & 2 & -3
\end{array}\right]
$$

using Elementary transformations.
(b) Find the values of a and b for which the equations $x+a y+z=3, x+2 y+2 z=b$ $x+5 y+3 z=9$ are consistent. When will these equations have unique solution? 7.5
9. (a) Find the Eigen values and Eigen vectors of Matrix :
7.5

$$
A=\left[\begin{array}{rrr}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

(b) Verify Cayley-Hamilton theorem and find the Inverse of matrix :
7.5

$$
A=\left[\begin{array}{rrr}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right]
$$

Roll No.

3007

B. Tech. 1st Semester (ME)

Examination - December, 2018

MATHEMATICS - I (CALCULUS \& MATRICES)

Paper: BSC-Math-101-G
Time : Three Hours]
[Maximum Marks : 75
Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting at least one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

1. (a) Determine Rank of Matrix. :

$$
6 \times 2.5=15
$$

$$
A=\left[\begin{array}{lll}
2 & 5 & 6 \\
1 & 2 & 3 \\
3 & 7 & 9
\end{array}\right]
$$

(b) Evaluate the following limit

$$
f(x, y)=\operatorname{Lt}_{x \rightarrow 1} \frac{2 x^{2} y}{x^{2}+y^{2}+1}
$$

(c) If $z=\sin ^{-1}\left[\frac{x^{2}+y^{2}}{x-y}\right]^{y \rightarrow 2}$ Determine $\left(\frac{\partial z}{\partial y}\right)$.
(d) State the Result of Lagranges's mean value theorem.
(e) Compute $B\left(\frac{5}{2}, \frac{3}{2}\right)$.
(f) Evaluate Curl $\left[e^{x y z}(i+j+k)\right]$.
UNIT - I
2. (a) Evaluate :
(i) $\underset{x \rightarrow 1}{\operatorname{Limit}} \frac{x^{x}-x}{x-1-\log x}$
(ii) $\operatorname{Lt}_{x \rightarrow \frac{\pi}{2}}(\tan x)^{\cos x}$
(b) Show that the evolute of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ is another equal cycloid.

7
3. (a) Find the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about y-axis. 7
(b) Prove that:
(i) $\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{5}}}=\frac{1}{5} B\left(\frac{2}{5}, \frac{1}{2}\right)$
(ii) $\int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}=\frac{1}{4 \sqrt{2}} B\left(\frac{1}{4}, \frac{1}{2}\right)$
UNIT - II
4.. (a) Test the convergence of following series:

$$
1+\frac{x}{2}+\frac{x^{2}}{5}+\frac{x^{3}}{10}+\ldots \ldots+\frac{x^{n}}{n^{2}+1}+\ldots \ldots
$$

(b) Test for convergence the series:

$$
\sum \frac{4.7 . \ldots \ldots \ldots .(3 n+1) x^{n}}{1.2 .3 .4 . \ldots n}
$$

5. (a) Test the convergence of an Alternating series:

$$
\frac{1}{1.2}-\frac{1}{3.4}+\frac{1}{5.6}-\frac{1}{7.8}+\ldots \ldots .
$$

(b) Find a Fourier series of $f(x)=x^{2}$ over the interval. $[-\pi, \pi]$.

UNIT - III

6. (a) If $v=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$ then prove that $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=0$.
(b) If $z=f(x, y)$ and $x=e^{u}+e^{-v}, y=e^{-u}-e^{v}$ prove that $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}$.

3007-3,650-(P-4)(Q-9)(18)
(3)
P.T. O.

